DR. EMANUEL SCHEIDEGGER DIPL. MATH. JULIA EICH Modulformen I WS 09/10 Institut für Mathematik Universität Augsburg

Übungsblatt 3

Torsionspunkte und Isogenie elliptischer Kurven

9. \wp kann durch Thetareihen ausgedrückt werden Es sei $f(z) = e^{i\pi\left(\frac{\tau}{4} + z + \frac{1}{2}\right)}\vartheta\left(\tau, z + \frac{1}{2} + \frac{\tau}{2}\right)$. Dann gilt:

$$\wp(z) = -\left(\frac{f'(z)}{f(z)}\right)' + \frac{1}{3}\frac{f'''(0)}{f'(0)}.$$

- (a) (2 Punkte) Zeigen Sie, dass $\left(\frac{f'(z)}{f(z)}\right)' \in \mathcal{E}_L^+$.
- (b) (2 Punkte) Bestimmen Sie die Pole von $\left(\frac{f'(z)}{f(z)}\right)'$, sowie die Laurentreihe von $\left(\frac{f'(z)}{f(z)}\right)'$ um einen Pol, um die Behauptung zu zeigen.
- 10. Wendepunkte und Additionsgesetz elliptischer Kurven
 - (a) (1 Punkt) Zeigen Sie, dass ein Wendepunkt $p \in E$ auf einer elliptischen Kurve E der Beziehung 2p = -p genügt (cf. Aufgabe 2).
 - (b) (1 Punkt) Wieviele Wendepunkte gibt es ausser dem Punkt im Unendlichen (cf. Aufgabe 3)? Geben Sie die Gleichung für die x-Koordinaten dieser Wendepunkte an, und lösen Sie die Gleichung für die Kurve $y^2 = 4x^3 8x$.
 - (c) (1 Punkt) Zeigen Sie, dass gilt: Verbindet man zwei Wendepunkte von E durch eine Gerade, so schneidet die Gerade die Kurve E in einem weiteren Wendepunkt. Es gibt 12 verschiedene Verbindungsgeraden von Wendepunkten von E.
 - (d) (1 Punkt) Der Punkt (2,4) liegt auf der Kurve $y^2 = 4x^3 8x$. Zeigen Sie, dass sein Doppeltes bezüglich der Addition auf elliptischen Kurven der Punkt $\left(\frac{9}{4}, -\frac{21}{4}\right)$ ist.

11. Torsionspunkte auf elliptischen Kurven

Ein Punkt $p = (x, y) = (\wp(z), \wp'(z)) \in E$ hat endliche Ordnung genau dann, wenn $Nz \in L$ für ein $N \in \mathbb{N}$. Das kleinste solche N heisst Ordnung von p und p heisst N-Torsionspunkt.

- (a) (2 Punkte) Beschreiben Sie geometrisch die vier Punkte der Ordnung 2, sowie die 12 Punkte der Ordnung 4, die nicht von Ordnung 2 sind.
- (b) (2 Punkte) Beschreiben Sie geometrisch die 9 Punkte der Ordnung 3.

12. Isomorphie von elliptischen Kurven

(4 Punkte) Es seien zwei Gitter $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ und $L' = \mathbb{Z}\omega_1' + \mathbb{Z}\omega_2'$ mit $\tau = \frac{\omega_1}{\omega_2} \in \mathcal{H}$ und $\tau' = \frac{\omega_1'}{\omega_2'} \in \mathcal{H}$. Zeigen Sie, dass \mathbb{C}/L und \mathbb{C}/L' genau dann isogen bzw. isomorph sind, wenn es ein Element $\gamma \in \mathrm{GL}_2^+(\mathbb{Q})$ bzw. $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ mit der Eigenschaft $\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = \gamma \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$ gibt. Hier ist $\mathrm{GL}_2^+(\mathbb{Q}) = \{A \in \mathrm{GL}_2(\mathbb{Q}) | \det A > 0\}$.

Abgabetermin: Freitag, 6.11.2009 um 10:00 Uhr.